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The path integral and operator formulations of the Fokker-Planck 
equation are considered as stochastic quantizations of underlying Euler- 
Lagrange equations. The operator formalism is derived from the path 
integral formalism. It is proved that the Euler-Lagrange equations are 
invariant under time reversal if detailed balance holds and it is shown that 
the irreversible behavior is introduced through the stochastic quantization. 
To obtain these results for the nonconstant diffusion Fokker-Planck 
equation, a transformation is introduced to reduce it to a constant diffusion 
Fokker-Planck equation. Critical comments are made on the stochastic 
formulation of quantum mechanics. 
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1. INTRODUCTION 

Two different methods  of  deal ing with the F o k k e r - P l a n c k  equa t ion  (FPE)  
are  receiving increasing at tent ion.  The first is the pa th  integral  me thod  
p ioneered  by  Onsager  and Mach lup  (1~ as a kinetic  genera l iza t ion  o f  the 
Bo l t zmann-E ins t e in  pr inciple  relat ing en t ropy  to probabi l i ty .  (2~ The p rob -  
ab i l i ty  d i s t r ibu t ion  funct ion for  f luctuat ion pa ths  is expressed in terms o f  a 
d iss ipa t ion  funct ion which is in turn  defined by  means  o f  the phe nome no-  
logical  kinetic  equat ions.  (a-l~ 

The  second me thod  for  deal ing with the F P E  has its origin in the ope ra to r  
fo rmula t ion  (ls-16~ o f  the M S R  fo rma l i smJ  i v  Ope ra to r  equat ions  o f  
m o t i o n  (~8-2~ are in t roduced  for  the set of  gross var iables  descr ibing the 
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system under consideration. As a result the classical gross variables no 
longer commute at different times. This approach can be viewed as a kind of 
Heisenberg picture for stochastic dynamics in which the time dependence of 
the probability distribution function is transferred to the gross variables. In 
this picture, commutativity between gross variables at different times is 
precluded by the stochastic nature of the process/21~ 

As an illustration of the practical importance of these methods we may 
cite the possibility of developing a consistent perturbation scheme ~14,2~ 
using the powerful techniques originally developed for quantum field 
theory. C23~ A remarkable feature of the Onsager-Machlup path integral form- 
ulation is the fact that the probability distribution over paths can be expressed 
in terms of an action integral of a Lagrangian (3-1~,2~-27~ for which the Euler- 
Lagrange equations are precisely the equations of motion of the Heisenberg 
picture. This result, first noted by Enz, (28~ is rigorously true as long as these 
equations are interpreted as c-number equations. The extension of this 
result to the operator equations of motion needed to describe stochastic 
dynamics is not straightforward, however, as ordering ambiguities have been 
found to occur. (5'1~'22'2~'2a~ 

The purpose of this paper is twofold. First, we wish to show how the 
ordering ambiguities may be dealt with by means of a consistent "stochastic 
quantization" procedure starting from a postulated path integral expression 
for the transition probability of a continuous Markov process or "diffusion 
process." By "stochastic quantization" we mean here the passage from 
c-number Euler-Lagrange equations to the operator equations describing 
stochastic dynamics. This should not be confused with Nelson's approach to 
quantum mechanics. (29-33~ Emphasis is placed, not on the different possible 
definitions of the path integral, (~4'2~ but rather on the differences with the 
analogous quantum mechanical procedure and, in particular, on the non- 
equivalence between the forward and backward FPE, a feature which does 
not appear in quantum mechanics but which does here due to the asymmetry 
between initial and final states. Our approach to the stochastic quantization 
problem is developed in Section 2, where we derive the operator equations 
of the Heisenberg picture for stochastic dynamics from the path integral 
formulation. 

Our second purpose is to analyze the origin of irreversibility in Fokker- 
Planck dynamics as related to the stochastic quantization procedure. We 
show in Section 3 that the Euler-Lagrange equations, when interpreted at the 
c-number level, have the remarkable property of being invariant under time- 
reversal as long as one assumes detailed balance in the form of the potential 
conditionsY ~ This points to a quite unexpected relationship between the 
time-reversal invariance of the c-number Euler-Lagrange equations and the 
property of microscopic reversibility of which detailed balance is the 



Stochastic Quantization and Detailed Balance in Fokker-Planck Dynamics 31 5 

expressionJ 3~ Of course, this "semimicroscopic"  reversibility of  the Euler-  
Lagrange equations is broken once stochastic quantization is performed, 
leading to the well-known irreversibility associated with the FPE. 

The work of Sections 2 and 3 is restricted to the case of constant diffusion 
coefficients. In Section 4 we consider the case of  variable diffusion coefficients 
and show that this case can be reduced to that of  constant diffusion by 
means of a transformation (35) whose significance has been discussed by 
Graham in the framework of a covariant formulation of the FPE. (s6~ This 
enables us to extend the results of  Sections 2 and 3 to the case of  variable 
diffusion as well. 

Finally, we devote an appendix to discuss the relevance of our work to 
the stochastic formulation of quantum mechanicsJ 29-a3) The latter formu- 
lation is shown to reduce to a "degenera te"  FPE in which all sources of  
irreversibility cancel at all times. 

2. PATH I N T E G R A L  F O R M U L A T I O N  A N D  S T O C H A S T I C  
O U A N T I Z A T I O N  

A continuous Markov process or "diffusion process" (sT) describing the 
time evolution of a set o fn  gross variables {ql ..... q~} is characterized by giving 
an expression for the transition probability density (conditional probability 
density) c~(q, t; q', t ' )  (t > t '). A particular process is then specified by a 
probability density P(ql,...,q,; 0) for the state of  the system under con- 
sideration at an initial time t = 0. For  any other time t > 0, the state of the 
system is given by 

e(q, t) = f d"q' ~,(q, t; q', O)P(q', O) (2.1) 

We will consider here a continuous Markov process characterized by a 
transition probability expressed as a path integral in a phase space to be 
defined below. In the path integral, every path is differently weighted by the 
action integral, allowing for fluctuations around the most probable path. The 
most probable path in configuration space is defined by the Euler-Lagrange 
equations associated to the Lagrangian featuring in the path integral. 2 So, 
the path integral represents what we call here a "stochastic quantization" of  
such Euler-Lagrange equations. 

a Although almost all paths of a diffusion process are nowhere differentiable, a sensible 
mathematical meaning can be given to a differentiable most probable tube of pathsJ 26'3B~ 
Such a most probable path is given by the usual Euler-Lagrange equations when the 
Lagrangian (2.2) is chosen. 
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Let us take as a starting point the Lagrangian (4'7,8'25-27) 
1 - 1  * ~L#(q, el) = ~D.~ (q .  - v,)(gl. - vv) + �89 av./Oq. (2.2) 

D,v is a symmetric, positive-definite, constant, real matrix and v. is a general 
real function of the gross variables q. 

The canonical Hamiltonian associated to this Lagrangian is given by the 
following Legendre transformation: 

p .  = O ~ ( q ,  gl)/Ogl. = �89 - v~) (2.3) 

Y f ( q ,  p )  = dl.p. - .L# = Dgvpgp~ + vgp.  - �89 (2.4) 

We now consider the analytical continuation of 2/:(q, p)  to the imaginary axis 
in the complex p plane. In other words, we consider (2.4) where p.  is replaced 
by a pure imaginary variable. In terms of this analytical continuation of 
YC'(q, p) a continuous Markov process is defined by 

�9 , (z (q~  t, q ,  t ' )  = 8~q(r) 8~p(r) e -A (2.5) 
~J 

A --- [p.(~)0.(z) - o~f(q(.),p(.))] d~ (2.6) 

where q,(r) is a real function and p . ( r )  a pure imaginary function. 
The most probable path in (2.5) will be in general complex, and, as 

already pointed out by Phytian, (29~ it lacks physical meaning. Nevertheless, 
if the p integration is carried out (which would not be possible for real p), 
only real paths survive in configuration space and they are weighted by 
exp[ - f l ;~ (q ( - : ) , g l (~ - ) )  dr],  where L# is the real-valued Lagrangian (2.2). 
This is the main difference between the problem at hand and a quantum 
problem with non-Hermitian Hamiltonian. In the quantum case the 
transition probability amplitude is a complex number and for a non- 
Hermitian Hamiltonian operator no real paths exist even in configuration 
space, since a complex Lagrangian is obtained. In our case, the path integral 
(2.5) defines a real transition probability and it can be understood as a 
"stochastic quantization" of the Euler-Lagrange equations associated with 
(2.2), which are equivalent to the Hamiltonian equations derived from the 
real-valued Hamiltonian (2.4). 

We now derive from the path integral formulation (2.5)-(2.6) an equiv- 
alent operator formalism. We will show that the equation of motion of the 
operator formalism in the SchrSdinger picture is a FPE for P(q,  t )  with drift 
v. and diffusion D.~. The equivalent Heisenberg picture equations of motion 
represent the so-called Fokker-Planck dynamics previously discussed by 
Garrido and San Miguel. (19,21~ To the momentum p there corresponds an 
unobservable operator in the operator formalism. This unobservability can 
be understood as related to the imaginary character o f p .  in (2.5). 
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In order to accomplish this program a precise meaning has to be given 
to the phase-space path integral (2.5). In fact there exist a multiplicity of 
possible Lagrangians, each of which must be combined with an appropriate 
discretization of the path integral. The Lagrangian (2.2) corresponds to the 
so-called symmetric ordering (24) and this is the prescription adopted here for 
the path integral. Accordingly, we introduce ~4~ a network of 2N + 1 times 
0 ~ and we consider the action to depend on the values o f p  at time 09''+1, 
i = 0 ..... N, and the values of q at times 02~, i = 1 ..... N. The values of q 
and p are thus considered at alternating times on the network. We also re- 
quire that the network becomes dense in such a way that the ratio of  

_ x-u t02,+ 1 _ 09.,) tends to 1. ~r=o (02`+2 09''+1) to z.,=0 
The path integral becomes 

f /  1 ~ N .(q, t ;q ' ,  t ') = lim ZU+l d'~p(02'+')l-- I d'~qt02')e -A (2.7) 
N--~ oo ~ i = O  i = 1  

where 
N 

A = ~ {pu(02'+l)[q~(02~+2) - qu(02')] 
, = 0  

- (09',§ 2 _ 02,+ 1 ) ~ ( q ( 0 2 ,  + 2), p ( 0 2 , +  1)) 

_ (02, +1 _ 02,)~(q(09',), p(02,+ 1))} (2.8) 

Furthermore, one should take 0 ~ = t, 02N § 2 = t ' and qu( t ) = q~ , q,( t ') = qu'. 
The normalization constant Z = (2~r)~i is fixed by the boundary condition 

~(q, t; q', t) = 3"(q - q') (2.9) 

The definition (2.7) of the path integral guarantees (4~ the fulfillment of  
the Chapman-Kolomogorov equation (37~ 

t; q', t ') = f d~q i ~(q, t; ql, t l)a(ql,  t l;  q,, t ') (2.10) ~(q, 

We now introduce operators q~P(t l) and p~ accounting for the 
possible alteration of a path by the appearance of dynamical variables at an 
intermediate time tl: 

op t I ~ .( q, ( ) (q, t; q', t ') = 8~q(~ -) 3~p(z) qu(P)e -A 

f d~q 1 ~(q, t" , q,1 ti)qu(p)c~(ql, p ;  q,, t') (2.11) 

op t i c~ .I pu ( ) (q, t; q', t ') = 8~q(z) 3~p(~ -) pu(P)e -A 

d~ f =ql  ~(q, t; ql tl)pu(tl)~(ql, t l ;  q ,  t ') (2.12) 
J 
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where in the last equalities of Eqs. (2.11) and (2.12) use has been made of 
Eq. (2.10). If t 1 = t or t i = t '  the action ofq~P(t 1) and p]~(t 1) looks simpler. 
For q~( t  ~) one has 

q~P(t)c~(q, t; q', t') = q~(q ,  t; q', t ') (2.13) 

q~P(t')~(q, t; q', t') = q~'c~(q, t; q', t ') (2.14) 

The action ofp~P(t ~) in these extreme time cases consists in the introduction 
in the integrand of the extreme values of p~, p~(02u+~), and p~(O~), respec- 
tively. This is achieved by taking derivatives of c~ with respect to q~ and q~', 
respectively: 

. t / p~ t, q ,  t') = ~ +  ~(q, t; q ,  t') (2.15) 

p~ t; q', t') = ~ '~(q ,  t; q', t') (2.16) 

Here we use the notation 0n = O/~q~, and ~ +  is the adjoint ~21~ of c2~, i.e., 
~ + = - ~/~qu. Therefore, Eqs. (2.11) and (2.12) can be rewritten as 

q~(t  ~)~(q, t; q', t') = f d"q ~ ~(q, t; q~, t l ) q ~ ( q  ~, t~; q', t ') (2.17) 

t ') = f d~q ~ a(q, t; ql, ti)~u~+c~(q ~, t i ;  q', t ') p~ t i )e~( q, t; q', 

= f d~q ~ (4.zc~(q, t ;q  ~, t~))~(q ~, tZ;q ', t') (2.18) 

On the same grounds it is possible to introduce time-ordered products of 
operators by 

ov i .op(,~a,,o~ ( t~+~.. .p.r .  ( )) (q, t') T(q~( t  ) ' "  ov t m ~ t,q," ' 

f ~ , t~  Q~+l) = 3"q(~') 3"p(~)q~(t ~) ... q,A )t',~ +~ ".. p~( t~)e  -~ (2.19a) 

f d"q% ... d~q% ~(q, t; q%, t%)q~(t%)~(q%, t%; q%, t%) ... ck(t ~m) 

• ~(q%~, t~ q', t ') (2.19b) 

= f d~q% ... d~q~ ~(q, t; q%, t%)IIi+c~(q%, t%; q%, t%) 

IIm + c~(q ~", t %~ ; q', t ') 

= f d~q% "'" d"q~,,(17zc~(q, t; q~,  t%)) ... (1/~c~(q~-~, t~-~;  q~,~, t%0) 

x c~(q~, t ~ ;  q', t') (2.19c) 

where we have used a specific notation: 
OP i OP m T(quz(t ) . . .  pu~(t )) = q~~ ~~ (2.20) 
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{t%..., t%} is the time-ordered permutation of {tl,..., tin}, d?~ is the 
operator acting at t% and ~(t~ is the corresponding c-number dynamical 
variable. On the other hand, and according to (2.13)-(2.16), 

f q ~  if ~(t~0 = qa(t~O IIj [.4~{ if 6(t~ = p,i(t*,) (2.21) 

In the following we will need to consider the limits of Eq. (2.19) in which the 
intermediate times (tl,..., t m} tend to the extreme times t and t'. One can 
easily check from (2.19c) that 

lim op i op t m c~ [[m+(z(q, " ' t ') T(q , l ( t  ) "" p.~(  )) (q, t; q', t ') = II1 + "" t, q , 
tam ~ ... -~t~l-*~ 

(2.22) 
op i ~ tm c, �9 ' lim T(q.1(t ) "'" Pure ( ) )  (q, t; q', t ')  = II m "'" l-Ilc~(q , t, q ,  t ')  (2.23) 

t r  . . . . - , U m ~  t,  

With the above definitions of operators it is now possible to derive the 
equations of motion satisfied by the transition probability ~(q, t; q', t'). 
From eqs. (2.5) and (2.6) 

~(q,t;q',t')~t = f '~qO')3~P('C) ( ~  f ~ , ' ~  d'c) e -A  (2.24) 

The derivative of the time integral of the Hamiltonian is obtained by con- 
tinuing the integral for a time At, extending the network used in the definition 
of the path integral, (~~ i.e., 

e5 Jt ~ dr = lim (2.25) 
�9 ~ t - + 0  At 

Dividing At by means of a network of 2N'  + 1 times with (0') ~ = t and 
(0') 2m+2 = t + At, in the limit At ---~ 0, N '  ~ o% one obtains that due to the 
requirement on the way in which the network becomes dense, 

, ~ dr = ~im ~ 1 [gg(q(r) ,p( ,  - 3)) + ~ ( q 0  - ~), P(r))I (2.26) 

Substituting (2.26) into (2.24) and recalling (2.19a), we obtain 

(O/~t)c~(q, t; q', t ')  

= lira �89176 p~ - 3)) + ~ ( q ~  - 3),p~ t; q', t ')  
6 ~ 0  

(2.27) 

Taking the limit according to (2.22) and the explicit form of the Hamittonian 
function (2.4) yields 

(O/Ot)~(q, �9 ' +~ +D t, q ,  t ')  = (FIx ~t~ ,~ + ~,+v,)~(q, t,q," ' t ' )  = L+(q,  ~)a(q, t,q,t')" ' 

(2.28) 
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where we have defined by the last equality the Fokker-Planck operator or 
adjoint Fokker-Planck Liouvillian (21~ L+(q, ~). This equation of motion is 
known as the forward FPE for the transition probability. (37~ 

By the same procedure the equation of motion of a(q, t; q', t') with 
respect to t '  is obtained: 

-f ( Ca(q, ot't; q', t ') ~"q(z) ~"p(z) l~,m ~ A-i-; ] 

= - l i r a  �89176 ' + 3),p~ + oVg(qO,(t'),pOp(t' + 3)))a(q, t; q', t ') 
6"*0 

(2.29) 
The limit to be considered now is (2.23) and it yields 

~a(q, �9 ' t ' ) /O'  t, q ,  = - ( D , ~ u ~  + v,~u)a(q, t,q," ' t ') 

= - L ( q ,  O)a(q, t; q', t ') (2.30) 

This equation of motion complementary to (2.28) is known as the backward 
FPE (37~ and L is the adjoint of the Fokker-Planck operator or Fokker- 
Planck Liouvillian. (21~ 

It should be remarked that both forward and backward FPEs have been 
deduced from the path integral definition of a(q, t; q't'), and that the deriva- 
tion depends crucially on the presence of the term �89 ~vu/~q~ in the Lagrangian 
and on the definition of the path integral. 

The equations of motion for the operators q~,P(t ~) and p]P(t i) can be 
obtained from their definitions (2.17) and (2.18) and from (2.28) and (2.30). 
For example, taking the derivative of (2.18) with respect to q ,  we obtain 

Op~ ~) 
Ot ~ ~(q, t; q', t') 

= f d"q ~ ( - L ( q  ~, O~)a(q, t; q~, t~))O~+a(q ~, t~; q', t') 

S d"qz '~(q' t; ql, tz)4~+L+(q ~, #~)c,(q ~, F; q', t') + 

= ( d"q ~ a(q, t; qX, t 1)[4~ +, L+(q ~, 4~)]~,(q ~, t l ;  q', t') (2.31) 
J 

and therefore 

8p~ 1)/8tl = [p~,P(t ~), Hop(t 1)] (2.32) 

where 3 

Hop(t 1) = lim �89176176 1 - 8)) + ~(q~ - ~),p~ (2.33) 
O ~ 0  

a Equation (2.33) represents the symmetric or Weyl correspondence rule (4~ (they 
coincide in our case of constant diffusion). 
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The precise meaning of the right-hand side of (2.32) is a limit of a time- 
ordered product of operators whose action, defined by (2.19), yields Eq. (2.31), 
i.e., 

[p]P(t~), Hop(t~)] = lim T(p~ 1 + 3')Hop(t 1) - p ~ P ( t  i - 3')Hop(t~)) (2.34)  

On the same grounds the equation of motion for q~P(t 1) is 

~q~P(t~)/~t i = [q~,9(tz), Hop(tz)] (2.35) 

It is thus established that Hop generates the motion of the operators and of 
the transition probability. 

To this point the formalism developed is closely related to the derivation 
of the Schr6dinger-Heisenberg formulation of quantum mechanics from Feyn- 
man's formulation. Nevertheless, a striking difference has to be remarked: 
although a bracket notation for c~(qt; q't') could sometimes be useful, (1~ 
the transition probability is a real number, while the quantum mechanical 
bracket is a complex probability amplitude and thus ~(qt; q't') cannot be 
interpreted as the product of a vector of a Hilbert space times a vector 
of the dual of the same Hilbert space. In other words, initial and final states 
are not related here by a complex conjugation. This is the reason why the 
explicit form at different times of a uniquely defined operator is different: 
the content of Eqs. (2.15) and (2.16) is different, while the analogous quantum 
mechanical equations are related by complex conjugation (even for a non- 
Hermitian Hamiltonian). The action of Hop(t ~) on a final time yields the 
forward FPE and its action on an initial time yields the backward FPE. The 
analogous equations in quantum mechanics are again related by complex 
conjugation. This asymmetry between initial and final states forces us to give 
some specification to obtain from (2.32) and (2.35) the operator equations of 
motion in a Heisenberg picture. 

The state of the system is described by P(q, t). From Eq. (2.1) it is clear 
that the arguments of P(q, t) represent a final state. Indeed, Eq. (2.28) implies 
that P(q, t) satisfies the FPE 

~P(q, t) a ~2 
~t = L+(q, ~)P(q, t) = -~-~q~ [v.(q)P(q, t)] + ~ D.vP(q, t) (2.36) 

We note that no backward FPE exists for P(q, t). 
The FPE (2.36) is an equation of motion for the state of the system and 

it defines the Schr6dinger picture. In this picture Hop(t) acts explicitly as 
L+(q, ~) and the average of a function of q at time t is evaluated by 

(f(q(t))) = f d"q P(q, t)f(q) (2.37) 
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In the corresponding adjoint picture (Heisenberg picture) the time 
evolution is transferred to the dynamical variables. The two possible specifica- 
tions of (2.32) and (2.35) that follow from (2.22) and (2.23) give rise to opera- 
tor equations related by the adjoint operation and the choice of one of them 
is forced by the prescription one gives to evaluate average quantities. Our 
prescription is the one contained in the so-called Fokker-Planck dynamics, 
in which, as discussed at length in Ref. 21, averages are evaluated with the 
initial probability density P(q, 0) placed at the left Of the dynamical vari- 
ables, which behave as operators acting on their initial values. For such 
a prescription, the initial time specification of (2.32) and (2.35) must be 
chosen. This assertion can be better understood rewriting (2.37) as 

( f (q( t)))  = f d"q [eL*tP(q, 0)]f(q) 

f d'q P(q, O)eUf(q) = f d"q P(q, O)f(q(t)) (2.38) 

It is then clear that L generates the motion of q(t) with initial value q(0) = q. 
Summarizing, in this Heisenberg picture, the explicit forms of  

[q~,P(t), Hop(t)] and [p~ Hop(t)] appearing in Eqs. (2.32) and (2.35) are, 
respectively, [L(q(t), (t(t)), q,(t)] and [L(q(t), q(t)), ~( t ) ]  as results from 
(2.14), (2.16), (2.23), and (2.33). In conclusion, the stochastic quantization 
of the Hamiltonian equations corresponding to the c-number real Hamil- 
tonian (2.4), which are equivalent to the Euler-Lagrange equations associ- 
ated to (2.2), is given by 

q~(t) -+ q,(t) 

pu(t) --~ ~.(t) 

~ ( q ( t ) ,  p(t)) --~ -L(q(t) ,  ~(t)) 

so that the commutation relations at equal times are 

[c],(t), q~(t)] = 3~v (2.39) 

and the equations of motion (21~ 

Ok(t) = [L(q(t), 4(t)), qu(t)] = vu(q(t)) + 2Du~c]v(t ) (2.40) 

~,(t) = [L(q(t), ~(t)), 4,(t)] Ovv(q(t)) ~( t )  (2.41) 
8qu(t) 

The key implication of these equations is the lack of commutativity of the 
gross variables q,(t) at different times, which reflects the stochastic character 
of the process. (21~ The formal solution of (2.40) reads 

q,(t) = eZ~q,(O)e -z' (2.42) 
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The factor e-L~ is of crucial importance when evaluating correlation functions 
of  q variables at different times in specific problems. (42) Nevertheless, when 
placed at the extreme right of  an integral, as it appears in one-time averages, 
it can be suppressed, since it acts on unity, giving value one. This is why 
the last equality in (2.38) is in agreement with (2.42). 

On the other hand, the solution of (2.40)-(2.41) gives c],(t) in terms of its 
initial values c]~(0), so that c],(t) is an operator which derives with respect to 
the initial values of q . ( t ) ,  i.e., q.(0) = q.. The operator ~,(t) is unobservable 
but is very useful to define response functions. (21) 

Finally we note that Eq. (2.41) is not formally equal to the c-number 
Hamilton equation for p . ( t ) ,  due to the disappearance in L of the - �89 
term of ~ that occurs in the stochastic quantization procedure. This point 
clarifies earlier results by Phytian, (39) who only considers c-number equations. 

3. I R R E V E R S I B I L I T Y  

The irreversibility of  the Fokker-Planck equation is reflected in the fact 
that (2.36) is not invariant under the time-reversal operation 

t --> --  t, q~ - ~  q~ 
(3.1) 

vu R --~ - v .  R, v .  t ---> v .  I, Duv --~ Duv 

where without loss of  generality, we may assume that the gross variables q. 
are even under time reversal and where v. R and v f  are, respectively, the 
reversible and irreversible parts of  the drift. ~ Note that the reversible part  v. R 
transforms as 0. and that there are two sources of irreversibility in the FPE: 
the irreversible drift vu I and the diffusion coefficients D.~. An irreversible 
behavior in the sense of dissipation is affected by the diffusion. This should 
not be confused with the irreversibility in the sense of  a deterministic but not 
time-reversal invariant equation of motion as qu = y r .  Under the very 
special conditions in which these two terms featuring the irreversible drift 
vu ~ and the diffusion coefficient D.~ cancel one another, the FPE becomes 
time-reversa! invariant. This is the case in stochastic models of quantum 
mechanics (29.aa) (see appendix). It  should also be stressed that the time- 
reversed Fokker-Planck operator 

c~.+(vff - v f )  + c).+c]v+Duv (3.2) 

is different from the adjoint operator L ( q ,  ~ )  

(v. R + vuZ)4. + D.v~.4~ (3.3) 

which appears in the backward FPE (2.30). <4a) 

4 If all gross variables are even under time reversal, then a reversible drift can arise only 
from a dependence of v. on some external parameters which change sign under time 
reversal. We shall not indicate dependence on these variables explicitly. 
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How does irreversibility manifest itself in the stochastic quantization 
scheme ? Consider the simplest example of one-dimensional, constant diffu- 
sion and linear irreversible drift with v R = 0. <1~ The corresponding Lagrangian 
is 

1 a (3.4)  5f(q,  gt) = ~ (q + aq) 2 2 

and the Euler-Lagrange equation 

/ j _  ~2q = 0 (3.5)  

is invariant under time reversal. However, the Lagrangian is not and, as was 
already noted by Onsager and Machlup, (1~ the two independent solutions 
q ,,~ e -at and q ~ e § give different contributions to the path integral due 
to the irreversibility of ~ .  It is also easy to see that stochastic quantization 
for this example leads to operator equations of mot ion  and commutation 
relations which break the time-reversal symmetry of the Euler-Lagrange 
equation. What we shall now show is that this holds true in general as long 
as the detailed balance conditions (34~ are satisfied. This general connection 
between detailed balance and time-reversal invariance of the Euler-Lagrange 
equations is rather unexpected. Although one knows that detailed balance is 
an expression of microscopic reversibility, (34~ the connection between the 
latter and the time-reversal invariance of the Euler-Lagrange equations for 
the gross variables is far from evident. In this section we shall consider the 
case of general drift in n dimensions but with constant diffusion matrix. 
Consideration of the variable-diffusion case is deferred to Section 4. 

The Lagrangian (2.2) yields the Euler-Lagrange equations 

~v. ~vB ~" ~2v~ = 0 (3.6) 4, - ~ (Iv + DuoDZv 1 -~o tqv - vv) - Duo Oq ~ eq----"-~ 

Equation (3.6) is invariant under time reversal if the following condition is 
fulfilled: 

( Ov: D - - ~ v ~ ' \ .  D --~[Ov~R OV~'v .  ) + ,oD,v --~q~)qv- ,oOa~ ~--~q~ vv z + 

O2veR - 0 (3.7) - Duo Oqo ~q----~ 

On the other hand, the Graham-Haken potential conditions, which follow 
from the assumption of detailed balance, are (34~ 

v : = - Buy Or (3.8) 

Ov.n/eq. = v. R er (3.9) 
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where (kst is the "potential function" defined in terms of the stationary 
solution Pst(q) of the FPE by 

~bst(q ) = - log est(q)  (3.10) 

It is a straightforward calculation to show that the potential conditions (3.8) 
and (3.9) ensure that condition (3.7) is fulfilled, thereby guaranteeing the 
reversibility of the Euler-Lagrange equations (3.6). An important point to 
note is that the presence of the �89 3v~,/~qu term in the Lagrangian is essential 
for this to be true. 5 

Although the Euler-Lagrange equations are time-reversal invariant, the 
Lagrangian (2.2) itself is not. Under time reversal 58 transforms into 5e' 
given by 

+Duv ( - q ~  + vu R - 58 ' (q ,  47) = ' -1  �9 v ] ) ( - ( T v  + v J  v / )  

1 ~v," + 1 evu____~ z (3.11) 
2 0q, 2 0q, 

As mentioned earlier in connection with the simple example (3.4), a time- 
reversal-invariant Lagrangian would not be compatible with overall irre- 
versibility in the path integral formulation of Fokker-Planck dynamics. 
However, a time-reversal invariant Lagrangian yielding (3.6) as its Euler- 
Lagrange equations does exist: it is 

58,nV(q, c)) = XD~-~z[(Ou - v,")((t~ - v~") + v,'v~'] + �89 ev,'/equ (3.12) 

Assuming again that detailed balance holds [Eqs. (3.8) and (3.9)], one easily 
finds 

5f  - 5fin ~ = _1 ~ " = -21 dg~tdt (3.13) 

Equation (3.1 3) exhibits 58 as the sum of two terms: 58i.~, which is even under 
time reversal, and an odd term �89 d(%Jdt which, when inserted into the path 
integral weight function e x p ( - f  58 dr), yields a term dependent only on the 
initial and final times. This decomposition of 58 gives an insight into its 
interpretation as a thermodynamical potential. (8) In the particular case of 
linear drift the term "thermodynamic action" has been applied by Lavenda(11) 
to the integral f 58i~ dr. The physical interpretation of the d ~ J d t  term is the 
subject of considerable controversy. (44'45) It seems doubtful whether ~ t  can 
be consistently identified with physical entropy as claimed by Lavenda (11) 

5 In a related result previously obtained by Ueyama (6) this important surface term was 
neglected. Moreover, Ueyama makes an additional assumption [his Eq. (25)] whose 
meaning is unclear and which, he erroneously claims, follows from the potential 
conditions. Hasegawa stated the above result in Ref. 43. 
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and also by Ueyama. (6~ It is also worth noting that the decomposition (3.13) 
has been used for the explicit construction of 5P in the case in which v, R = 
0. (46,~6,12~ Detailed balance and this further condition are always satisfied in 
one-dimensional problems (26,1m if natural boundary conditions are con- 
sidered. The term 

~Qainv 1 r }  - 1,~ i:,~ i 

represents then the mechanical potential of the self-adjoint form of the FPE 
and e-r162 2 is the factor coming from the transformation to this self-adjoint 
form. 

In contrast to the noninvariance of the Lagrangian, the real Hamiltonian 
(2.4) is time-reversal invariant, provided detailed balance is satisfied. This 
follows from the transformation 

p ,  --~ - p ,  - Dy~Zv~ I (3.14) 

which is in turn a consequence of the definition (2.3) of p and the trans- 
formation (3.1). Of course, the c-number real Hamilton equations of motion 
are also time-reversal invariant under the same conditions. 

The operator formulation of stochastic quantization, as we have seen in 
Section 2, is based upon two mutually consistent sets of premises" (a) equal- 
time commutation relations [Eq. (2.39)], and (b) equations of motion of the 
form (2.40) and (2.41). While detailed balance ensures the time-reversal 
invariance of the Euler-Lagrange equations (3.6) at the c-number level, this 
invariance cannot be extended to the stochastic quantized level. Stated 
differently, stochastic quantization breaks the time-reversal symmetry of 
the equations of motion. The problem lies in the incompatibility between the 
condition for time-reversal invariance of the equations of motion and the 
corresponding condition for the invariance of the commutation relations. If  
c], transforms as p~ in (3.14), the equation for q,,  (2.40), is invariant, but the 
commutation relations are not time-reversal invariant. Under this trans- 
formation the equation for c],, (2.41), is not in general invariant, but the 
important point is the breaking of the time-reversal invariance of the com- 
mutation relations, as can be easily realized considering the special case of 
linear drift v, = A,~q~. In this case, the - � 89  av~/~q, term in the Hamiltonian 
(2.4) is just a constant and so the c-number real Hamilton equations are 
formally identical to the operator equations (2.40) and (2.41). Both equations 
(2.40) and (2.41) are then invariant, but the commutation relations are not. 
On the other hand, the identification c], = ~/Oq, requires the transformation 
law c], -+ ~u, in which case the commutation relations are invariant but the 
equations of motion become noninvariant. 

In conclusion, stochastic quantization introduces some uncertainty or 
loss of determinism with respect to the Euler-Lagrange equations defining 
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the most probable path, which causes an irreversible behavior. In the path 
integral formulation of the stochastic quantization, irreversibility is due to the 
Lagrangian itself, while in the equivalent operator formalism it appears as 
a requirement of consistency between equations of motion and commutat ion 
relations. 

4. N O N C O N S T A N T  D I F F U S I O N  FPE 

In this section we show how the FPE 

~P(q, t) 0 a 2 
at - ~q. [v.P(q, t)] + ~ [D.v(q)P(q, t)] (4.!) 

with nonconstant diffusion coefficients D,~(q) can be reduced to one with 
constant diffusion coefficients by means of a change of variables. ~3s'27~ This 
result generalizes previous work for the one-dimensional case (~,26'~7~ and its 
significance has been discussed in detail by Graham(a~: in a covariant 
formulation of the FPE it represents a transformation to a set of holonomous 
coordinates. The possibility of performing this kind of reduction eliminates, 
in such a case, the need for a separate discussion of the nonconstant diffusion 
case. Instead the results of Sections 2 and 3 may be applied directly to the 
constant-diffusion FPE in the transformed variables, as we shall show. 

The diffusion matrix D.v(q) is a symmetric, positive-definite, n x n 
matrix, and therefore there exists (a,48~ a real, symmetric, n x n matrix 
ga~(q) such that 

gu~(q)g.~(q) = D.~(q) (4.2) 

Let us introduce a new set of  n gross variables Q. by 

dQ. = g;~ dq~ (4.3) 

The condition for the Q. to be well defined is that dQ. be an exact 
differential, i.e., that 

@G1 @gvl - 0 (4.4) 
8qv 8q~ 

Graham (36~ has called (4.4) a "holonomity  condit ion" in his covariant 
formulation of the FPE. Such a condition implies that D.v(q) can be con- 
sidered as a Euclidean metric and therefore there exists a set of coordinates 
in which D.v = ~.~. We will now show explicitly that indeed in the FPE in 
the Q variables the diffusion matrix is 8u~. 
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Condition (4,4) implies that 

1 Du, OD Og.~ (4.5) 
2 D 8q. = "Sq. g~v 

where D = 1[ D.v I1 is the determinant of the D,v matrix. It is in this form that 
we shall use the holonomity condition throughout the remainder of this 
paper. 

Denoting P(q(Q), t) by ~(Q,  t), we have 

(f(q(t))) = f d"qP(q, t)f(q) = f d"Q [ [~(Q, t)f(q(Q)) (4.6) 

so that the Fokker-Planck distribution function in the Q variables is 

e ' (a ,  t) = ~(O, t)V-O (4.7) 

Derivation of the corresponding FPE in the new variables is somewhat 
lengthy. Summarizing the main steps in the calculation, the substitution of 
(4.7) into (4.t) and use of (4.3) yields 

OP'(Q. t) - X/D g~l 8 v. , 
8t = 8Q, V'D P (Q' t) 

8 8 ~/DP'(Q' t) (4.8) 

The condition (4.5) implies, when (4.3) is used, that 

[0.~, X/D g~,~] = 0 (4.9) 

By means of (4.9) the first term on the right-hand side of (4.8) reduces to 
-(8/SQ,)g2~iv~P '. The second term is simplified in two steps. In a first step 
8/OQ~ is written in the extreme left using (4.9). In a second step 8/SQe is 
taken to act directly on P'(q, t) and the commutator involved is simplified 
according to (4.5). Finally, we obtain that 

8P'(Q, t) 0 
Ot = OQ u g2,~v,P'(O, t) 

8 ~ 8 2 
+ ~ g;,~ P'(Q, t) + ~ P'(Q, t) 

8 0 2 
- 8Q~. [v.'P'(a, t)] + ~ P'(Q, t) (4.10) 

where the last equality defines the transformed drift v,'(Q) and where it is 
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verified that 8,~ appears as the diffusion matrix for the FPE in the Q 
variables. 6 

It was shown in Section 2 that we can associate to the FPE (4.10) a 
Lagrangian 

~.Ca(Q, Q) = �88 _ v~,)2 + �89 Ov~,'/~Q~, (4.11) 

which under stochastic quantization yields as generator of motion the operator 

L(Q, O) = 0.~,0, + v, ' (a)O.,  (4.12) 

The generator of motion for the Fokker-Planck dynamics associated 
to our starting FPE (4.1) is now obtained by reexpressing L given by (4.t2) 
in terms of q, and c~, through the use of (4.3): 

ag~,(q)l ~ 
L(q, ~t) = gu,~(q)q~guB(q)qB + vu(q) -- ge~(q) ~ ( q )  J qu 

= O,~(q)O,O~ + V,,(q)4, (4.13) 

Obviously, the Liouvillian obtained is the adjoint of the Fokker-Planck 
operator featured in (4.1). 

The results of Section 3 may be now applied directly to the Lagrangian 
(4.1I) and to its stochastic quantization. The key assumption made in that 
section was the fulfillment of the potential conditions (3.8) and (3.9). Thus, 
the discussion of the time-reversal properties made in Section 3 and its 
application to (4.11) will be meaningful for the FPE (4.1) whenever potential 
conditions for (4.10) could be deduced from the potential conditions for 
(4.1). We now show that this is the case for the transformation (4.3). Detailed 
balance is assumed for the starting FPE (4.1) and the corresponding potential 
conditions are (34~ 

v,J(q) - aD~(q)  Du~ ar (4.14) 
Oq~ Oq~ 

avff(q) ar 
~qu = vf f (q)  Oqu 

where 

Cst(q) = - log Pst(q) (4.16) 

The definition (4.10) of v,' implies that 
t R  vu (Q) = gTvl(Q)v~ R (4.17) 

v~(Q) = gSv1(Q)vv ~ - gj, t(Q) OgB~(Q)/aQ B (4.18) 

6 It is interesting to mention that the inverse transformation from (4.10) to (4.1) allows 
one to consider a class of exactly solvable nonlinear FPEs. (4s~ 
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From Eq. (4.17) and substituting (4.15), 

0v~ (Q) ~r 8 g ~ ( Q )  
8Q~ = v'~Z~(Q) ~Q~ + g ~ ( Q ) v ~ ( Q )  ~Q~ 

0 
= v ~ ( Q ) - ~ ,  [r - log ~ D ]  (4.19) 

where in the last equality use has been made of (4.5) expressed in Q variables. 
Substituting (4.18) in (4.14) and using (4.5) again, one easily arrives at 

v~(Q)  = - (~/OQ~)[r - log v/D)] (4.20) 

Equations (4.19) and (4.20) are recognized as the potential conditions for 
the FPE (4.10) [see (3.8) and (3.9)] because 

e'er(Q) =- - log PEt(Q) = - log[P~t (q(Q))a /D]  = r - log ~/D (4.21) 

The reason for this conservation of the potential conditions under the change 
of coordinates (4.3) is basically found in Graham's formulation ~36~ of de- 
tailed balance as a covariant physical property. 

It is finally instructive to look at the properties of the Lagrangian (4.11) 
when expressed in terms ofq  variables by means of the point canonical trans- 
formation (4.3). Defining w, by 

v~,' = g~vlw~ (4.22) 

and taking into account that 

O~ = (~O~/~q~)(tv = g7~10~ (4.23) 

we can write the Lagrangian (4.11) as 

1 1 ~ 1 ~ ( q ,  ~) = ~ [g7~1(c)~ -- w~)] 2 + ~ g~ ~ (g~-~ w=) 

1 ~ 1 a /D  O wu (4.24) = ~ D;v (4~ - w~)((t~ - w~) + ff aq~ v / ~  

where to obtain the last equality the holonomity condition (4.5) is used. It 
should be remarked that (4.24) coincides with the Lagrangian already proposed 
by Stratonovich and Graham for flat spaces. ~ This coincidence is established 
at once since (4.5) yields the following explicit expression for wu: 

0 D~  (4.25) w~ = v~ - ~ / ~  aq~ ~ / ~  

The restriction to fiat spaces has been introduced here through the holo- 
nomity condition (4.4). 
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The fact that Eq. (4.24) coincides with the Graham-Stra tonovich 
Lagrangian is a direct consequence of the scalar character of  the action 
integral. (36,a8,5~ What  this means is that both the functional probability 
density exp(-J" c f  dr)and the measure in functional space are invariant under 
general coordinate transformations. ~a6'38'5~ Correspondingly, the Euler-  
Lagrange equations associated to (4.11) and (4.24) transform into each 
other, 8 and therefore, the latter define the most probable path corresponding 
to (4.1) in the primitive variables. We stress that, in accordance with the usual 
definition given at the beginning of Section 2, the most probable path is the 
path that satisfies the Euler-Lagrange equations corresponding to the extrema 
of the action integral. The concept of  most probable path subject to various 
types of boundary conditions has been further analyzed in Refs. 51 and 52. 

The Lagrangian (4.24) conserves the properties under time reversal 
that were discussed in Section 3 : Its Euler-Lagrange equations are invariant 
under time reversal if the potential conditions (4.14) and (4.15) are assumed. 
These Euler-Lagrange equations are 

,[ODg. 1 . ~Wv 1 3D& 1 ] 
+ (q, - w,) ~ q v  + D~ 1 ((Iv - wv) ~q~ 2 3q~ 1 

a (V/D--~-~ w v )  = 0  (4.26) 
aq~ ~q~ V D  

Equation (4.26) is invariant under time reversal if the following condition is 
fulfilled: 

0 (DyvlWvr)]- - - ~ [ a w f  OWJwe ) 

1 8D~ 1 (wuRw~ z + wu~wvR ) _ ~ ~/-D ~ -~-~] = 0 
2 aq~ 

(4.27) 

This remarkable property is not observed for ordinary probabilities, where in general 
the transformation law of the probability density involves a Jacobian. See, for example, 
(4.7). 

8 Note that if one directly applies the correspondence rule (2.33) to the Lagrangian (4.24) 
one does not obtain the correct Liouvillian (4.13). This is not surprising, since it 
reflects the fact that the correspondence rule to be used depends on the choice of 
coordinates if these are changed according to the usual rules of calculus, c53~ The Lagran- 
gian from which the Liouvillian (4.13) is obtained according to the symmetric ordering 
used in Section 2 is given in Ref. 24 and it differs from (4.24). 
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where, of course, 

w. n = v, R (4.28) 

0 D.v (4.29) 

Although lengthy, it is a straightforward calculation to check that (4.14) and 
(4.15) imply the vanishing of the coefficient of c), and of the remaining term 
in (4.27). 

In the same way as it happened to the constant-diffusion Lagrangian, 
(4.24) is not invariant under time reversal, but there exists an invariant 
Lagrangian ~ . v  yielding the same Euler-Lagrange equations (4.26): 

*L~e~V(q, q) = ~ D;~[(0v - wf)(dl. - w. R) + w.lw. ~] + V'D 0 w~ (4.30) 
aq~ V D  

Assuming once again the potential conditions (4.14) and (4.15), we find that 

= ~ ~ (r - log ~/D) (4.31) 

Comparing (4.31) with (4.21) and (3.13), we conclude the invariance under 
the change of variables (4.3) o f ~  - ~ ,  a quantity whose physical meaning 
was discussed earlier. 

A P P E N D I X  

An attempt to give a stochastic foundation to quantum mechanics was 
made some years ago by a number of authors. (29-3:) We shall consider here 
only the work of de la Pefia-Auerbach, which is representative of this line of 
research, and address ourselves to the question, " H o w  can quantum me- 
chanics, a time-reversal invariant theory, be reduced to a stochastic process 
which, as discussed in Section 3, exhibits irreversible behavior?".  Writing 
the quantum mechanical wave function r in the form exp(R + iS), de la 
Pefia-Auerbach has shown (3~ that the probability density P = ~b*~b can be 
taken to satisfy a FPE of the form 

~P/Ot = - V .  ~P + Do ~2p (A1) 

where ~ is the sum ~ + ~ of a systematic velocity ~ and a stochastic com- 
ponent ~ that are given by 

= 2Do VS (A2) 

= 2Do VR (A3) 
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and Do = h/2m.  Under time reversal g-->-17 and ~--> ~,<3o> so that z7 
corresponds to what we have called v. r, the irreversible drift, and g is the 
reversible drift v. R. The derivation of a FPE for the quantum mechanical 
probability density is a crucial result of the so-called stochastic interpretation 
of quantum mechanics. (al~ 

Since quantum mechanics is a time-reversal invariant theory, consistency 
requires that the FPE (A1) be time-reversal invariant as well. This is indeed 
the case, and it is instructive to see how it comes about. From Eq. (A3) and 
the definition P = e 2R of R we have 

zi = Do V7 log P (A4) 

o r  

- V . ( ~ P )  + Do ~2P = 0 (A5) 

so that the two sources of irreversibility in the FPE, namely the irreversible 
drift and the diffusion, simply cancel one another at all times. Equation (A1) 
reduces to 

~P/~t = - V .  ~P (A6) 

which is just the time-reversal invariant continuity equation for the quantum 
mechanical probability density. Although Eq. (A1) is formally similar to a 
FPE for a general diffusion process, nevertheless it fails to exhibit the key 
property of irreversibility that is normally associated with physical diffusion. 
In a sense the appearance of a FPE in this context is somewhat artifical: 
mathematically, it is seen to correspond to the simultaneous addition and 
subtraction of a diffusion term to Eq. (A6) through the use of (A4). It is also 
amusing to note that Eq. (A4) is of the same form as the potential condition 
(3.8) with the important difference that it is l o g P  and not logPst which 
appears in (A4). Clearly, such an extension of the potential condition from 
P~t to P goes far beyond detailed balance and implies a serious mutilation 
of the FPE. Indeed, Eq. (A4) means that the drift of  (A1) is not an item 
external to that equation, but depends on the state of the system P(q ,  t)  at 
every time. 
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